LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2007
MT 1806 - ORDINARY DIFFERENTIAL EQUATIONS

ANSWER ALL QUESTIONS

I. a) Consider the Differential Equation $x^{\prime \prime}+\lambda^{2} x=0$, prove that $A \cos \lambda x+B \sin \lambda x$ is also a solution of the Differential equation. OR
If the Wronskian of 2 functions $x_{1}(t)$ and $x_{2}(t)$ on I is non-zero for at least one point of the interval I, show that $x_{1}(t)$ and $x_{2}(t)$ are linearly independent on I.
b) State and prove the method of variation of parameters.

OR
By the method of variation of parameters solve $x^{\prime \prime \prime}+x^{\prime \prime}+x^{\prime}+x=1$
II. a) Prove that $\mathrm{J}_{\mathrm{n}}{ }^{\prime}(\mathrm{x})=\mathrm{J}_{\mathrm{n}-1}(\mathrm{x})-(\mathrm{n} / \mathrm{x}) \mathrm{J}_{\mathrm{n}}(\mathrm{x})$

> OR

Show that the generating function for the Legendre polynomial is

$$
\begin{equation*}
\left(1 / \sqrt{ } 1-2 \mathrm{tx}+\mathrm{t}^{2}\right)=\sum_{n=0}^{\infty} t^{n} P_{n}(x) \text { if }|\mathrm{t}|<1 \&|\mathrm{x}| \leq 1 \tag{5Marks}
\end{equation*}
$$

b) Solve the Bessel's equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$ OR
Solve $9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0$
III. a) Using Rodrigues' Formula, find $\mathrm{P}_{0}(\mathrm{x}), \mathrm{P}_{1}(\mathrm{x}), \mathrm{P}_{2}(\mathrm{x}) \& \mathrm{P}_{3}(\mathrm{x})$.

OR
Show that $\mathrm{F}(1 ; p ; p ; x)=1 /(1-x)$
b) Show that Gauss' equation has $2 \mathrm{~F}_{1}(\alpha ; \beta ; \gamma ; \mathrm{x})$ as a solution.

OR
State and prove the Integral representation of $2 \mathrm{~F}_{1}(\alpha ; \beta ; \gamma ; \mathrm{x})$. (15 Marks)
IV. a) Considering the Differential Equation of the Sturm-Liouville Problem, prove that all the eigen values are real.
OR

Solve the initial value problem $\mathrm{x}^{\prime}=2 \mathrm{t}-\mathrm{x}, \mathrm{x}(0)=1$
b) State and prove Picard's Boundary Value Problem.

OR
State Green's Function. Prove that $\mathrm{x}(\mathrm{t})$ is a solution of $\mathrm{L}(\mathrm{x})+\mathrm{f}(\mathrm{t})=0$ if and only if $\mathrm{x}(\mathrm{t})=\int_{a}^{b} G(t, s) f(s) d s$.
V. a) Give examples of Lyapunov's Stability definitions.

OR
Obtain the condition for the null solution of the system $\mathrm{x}^{\prime}=\mathrm{A}(\mathrm{t}) \mathrm{x}$ is asymptotically stable.
b) Study the stability of Autonomous Systems $\mathrm{x}^{\prime}=\mathrm{g}(\mathrm{x})$.

OR
Study the stability of x' = A x by Lyapunov's Direct Method.
(15 Marks)

